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While deep learning (DL) models have shown promise in breast cancer diagnosis using digital breast 
tomosynthesis (DBT) images, the impact of varying matrix sizes and image interpolation methods on 
diagnostic accuracy remains unclear.  Understanding these effects is essential to optimize preprocessing 
steps for DL models, which can lead to more efficient training processes, improved diagnostic accuracy, 
and better utilization of computational resources.  Our institutional review board approved this retrospective 
study and waived the requirement for informed consent from the patients.  In this study, 499 patients (29-90 
years old, mean age 50.5 years) who underwent breast tomosynthesis were included.  We performed 
downsampling to 256 × 256, 128 × 128, 64 × 64, and 32 × 32 using five image interpolation methods: 
Nearest (NN), Bilinear (BL), Bicubic (BC), Hamming (HM), and Lanczos (LC).  The diagnostic accuracy of 
the DL model was assessed by mean AUC with its 95% confidence interval (CI).  DL models with 
downsampled images to 256 × 256 pixels using the LC interpolation method showed a significantly lower 
AUC than the original 512 × 512 pixels model.  This decrease was also observed with the 128 × 128 pixels 
DL models using HM and LC methods.  All interpolation methods showed a significant decrease in AUC for 
the 64 × 64 and 32 × 32 pixels DL models.  Our results highlight the significant impact of downsampling 
size and interpolation methods on the diagnostic performance of DL models.  Understanding these effects 
is essential for optimizing preprocessing steps, which can enhance the accuracy and reliability of breast 
cancer diagnosis using DBT images.
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Introduction
Breast cancer is the most common cancer affecting 

women worldwide, and its incidence and mortality rates are 
expected to increase (Anastasiadi et al. 2017; Harbeck et al. 
2017).  Mammography has proven to be an effective screen-
ing tool for early detection of breast cancer (Harbeck et al. 
2017).  The sensitivity and specificity for diagnosing breast 
cancer using mammography by physicians are reported to 

be 86.9% and 88.9%, respectively (Lehman et al. 2017).  
Hamashima et al. (2015) reported that a meta-analysis of 
five randomized controlled trials showed a 25% reduction 
in mortality with mammography alone.

Recently, digital breast tomosynthesis (DBT), a new 
and advanced breast imaging technique, has been applied in 
clinical practice.  DBT allows for volumetric reconstruction 
of the entire breast from several two-dimensional projec-
tions obtained at different X-ray tube angles (Nelson et al. 
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2009).  Thinly sliced images acquired by DBT improve 
sensitivity and specificity compared to mammographic 
images by reducing the overlap between breast tissue and 
lesions, especially in dense breast tissue (Anastasiadi et al. 
2017).  Previous research has shown that DL models based 
on FFDM and DBT images reduce the workload of physi-
cians by 29.7% without compromising the quality of results 
(Mendel et al. 2019; Raya-Povedano et al. 2021).

Deep learning (DL) has been applied in various medi-
cal fields, such as speech recognition, visual object recogni-
tion, and object detection (LeCun et al. 2015).  Although 
the application of DL has been boosted by the development 
of GPUs, large datasets, and advanced algorithms (Rawat 
and Wang 2017), the limited size of GPU memory creates a 
tradeoff between batch size and image matrix size used to 
train DL models (Sabottke and Spieler 2020).  Batch size is 
the number of images used for each parameter update in 
stochastic gradient descent (Kandel and Castelli 2020).  
Kandel and Castelli (2020) reported that batch size affects 
the accuracy of DL models and the time taken until conver-
gence.  Other research reported that extremely small batch 
sizes slow convergence during training and degrade perfor-
mance during inference (Yan et al. 2020; Lin 2022).  
Optimizing batch size is essential for achieving high-per-
forming DL models.  However, batch size needs to be 
reduced due to the limited size of GPU memory when 
images with large matrix sizes are used to train DL models 
(Sabottke and Spieler 2020).

Downsampling is commonly applied as a preprocess-
ing step for deep learning models that work with image 
datasets with large matrix sizes.  The application of downs-
ampling sufficiently increases the batch size during DL 
training, so appropriate downsampled images improve the 
performance of DL models.  There are several kinds of 
interpolation methods to reduce the matrix size of images, 
such as Nearest (Lehmann et al. 1999), Bilinear (Lehmann 
et al. 1999), and Bicubic (Keys 1981).  Since the matrix 
size of medical images is commonly much larger than that 
of images in other fields, such as natural images (Willemink 
et al. 2020), the batch size for medical images is more 
severely limited by GPU memory compared to natural 
images.  Sabottke and Spieler (2020) found that reducing 
the matrix size through downsampling did not significantly 
affect the performance of DL models for diagnosing chest 
radiographs.  DL models trained on downsampled chest 
radiographic images performed comparably to those trained 
on larger images (Sabottke and Spieler 2020).  Hirahara et 
al. (2021) reported that the type of interpolation method for 
downsampling chest radiographs affects the performance of 
DL models.  As the image matrix size of FFDM and DBT 
images in breast cancer imaging is much larger than other 
medical images, including chest radiography, the benefit of 
downsampling may be even greater for DL models for 
breast cancer imaging than for chest radiography (Lehman 
et al. 2017).  The purpose of our study is to investigate the 
impact of different matrix sizes and various image interpo-

lation methods on the diagnostic performance of DL models 
for breast cancer classification using DBT images.  Our 
study provides insights into optimal preprocessing tech-
niques for DL models, ensuring that diagnostic accuracy is 
maintained while maximizing computational efficiency.  
This knowledge may contribute to the development of more 
robust and efficient DL models and facilitate their practical 
application in medical image processing.  By identifying 
the most effective downsampling sizes and interpolation 
methods, we aim to enhance the overall performance and 
reliability of DL models.

Materials and Methods
Patient enrollment

The institutional review board approved this retrospec-
tive study and waived the requisite to obtain the informed 
consent from the patients.  Fig. 1 shows flowchart of patient 
enrollment for this study.  A total of 499 patients (mean age 
of 50.5 years, ranging from 29 to 90 years) who admitted 
and underwent DBT between March 1, 2019 and August 
31, 2019, were enrolled in this study.  This study used bilat-
eral mediolateral oblique (MLO) views of DBT imaging 
from 978 breasts of 499 patients.  Out of the 978 breasts, 
we excluded 331 breasts on the basis of lack of bilateral 
imaging (20 breasts), gynecomastia (10 breasts), post-oper-
ation (36 breasts), with metal clips placed after biopsy (5 
breasts), and cases with inaccurate annotation due to inac-
curate localization by DBT (260 breasts).  As a result, DBT 
image dataset of 647 breasts were enrolled in this study 
including 170 breasts with pathologically confirmed breast 
cancers and 477 breasts with benign lesions (198 breasts) or 
normal breast tissue (279 breasts).

The determination of normal or benign lesions were 
those confirmed by histopathology or those for which ultra-
sound and magnetic resonance imaging.

The DBT dataset was randomly split into two datasets 
with 80% and 20% for training dataset and test dataset, 
respectively.  To ensure that images from the same patient 
do not overlap between the training and test datasets, differ-
ent slice images from the same patient were allocated to 
either the training or test dataset.  Finally, 170 breasts with 
breast cancer and 477 breasts without breast cancer (198 
with benign lesions and 279 normal breasts) were analyzed 
in this study.  Out of the 170 breasts with pathologically 
confirmed breast cancer, 103 lesions were depicted as a 
mass, and 71 were identified as calcifications.  Some breasts 
had multiple lesions, and each of these was counted inde-
pendently.  Furthermore, 14 lesions exhibited characteristics 
of both mass and calcification and were counted in both 
categories.

Clinical interpretation of tomosynthesis images
All DBT images were acquired on the 3Dimentions 

Mammography System (Hologic, Inc., Bedford, MA).  The 
scanning parameters for the DBT images were as follows: 
kilovoltage peak ranged from 26 to 45 kV; current from 140 
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to 200 mA; exposure time from 154 to 489 ms; compres-
sion force from 26.7 to 191.4 N; breast thickness from 13 to 
108 mm; and absorbed dose from 0.0092 to 0.0688 Gy.  
The total tomographic angle range was 15˚, spanning from 
−7.5˚ to 7.5˚, consisting of 15 projection views taken at 1˚ 
increments.  The interslice interval was 1 mm, and the reso-
lution was 70 µm × 70 µm per pixel.  All breast lesions 
were diagnosed and annotated by radiologists with over five 
years of experience in breast cancer imaging.  To study the 
effect of downsampling on mass visualization, the diameter 
of the breast cancer masses was investigated.  The sizes of 
100 breast cancer masses were measured.

Image preprocessing
The images were converted into 16-bit PNG format and 

cropped to 512 × 512 pixels, centered at the coordinates of 
the region annotated by the radiologists.  If a cropped image 
at 512 × 512 pixels overlapped with the DBT image bound-
ary, it was automatically shifted in parallel to ensure all pix-
els fit within the image range.  For images of normal breast 
tissue, square areas of 512 × 512 pixels were randomly 
selected and cropped, avoiding any breast cancer lesions (Li 
et al. 2020; Yu et al. 2020).  All the original cropped images 
of 512 × 512 pixels were then downsampled to 256 × 256, 
128 × 128, 64 × 64, and 32 × 32 pixels using each of the five 
interpolation methods available in the Python Pillow image 
processing library.  These methods include Nearest (NN) 
(Lehmann et al. 1999), Bilinear (BL) (Lehmann et al. 1999), 
Bicubic (BC) (Keys 1981), Hamming (HM) (Harris 1978), 

and Lanczos (LC) (Duchon 1979).  NN is an algorithm that 
calculates the pixel value by taking the nearest neighbor 
point among the four adjacent points (Lehmann et al. 1999).  
BL is a linear interpolation method that computes the aver-
age pixel value based on the distances to the four surround-
ing points (Lehmann et al. 1999).  BC is a cubic interpola-
tion method that interpolates pixels according to the adjacent 
16 pixels, fitting the profile of circular diffraction gratings 
(Keys 1981).  HM uses a hamming window for interpola-
tion, where the end values of the window are zero, thus 
avoiding signal reflection in the spectrum (Harris 1978).  LC 
is characterized by discontinuities at the interval’s ends and 
approximates the sinc filter, with each interpolated value 
being the weighted sum of two consecutive input samples 
(Duchon 1979).  Fig. 2 illustrates examples of four grades of 
downsampled images using these five interpolation methods 
on an original 512 × 512 pixel image.

Implementation environment
The networks were implemented on a machine 

equipped with an Intel Core i7-7800X CPU, featuring 6 
cores, and an NVIDIA QUADRO RTX 8000 Graphics 
Processing Unit with 48 GB of memory.  The operating 
system used was Ubuntu 18.04.5 LTS (Long Term Support), 
Xenial Xerus.  All analyses were conducted using Python, 
version 3.8.2 (Python Software Foundation at http://www.
python.org).  The deep learning framework employed was 
PyTorch, version 1.5.1.

Fig. 1  Flowchart of inclusion and exclusion in the present study.
	 In total, 647 breasts were analyzed in this study.
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DL model
A residual neural network (ResNet50), which has been 

widely applied in various DL models for breast cancer 
imaging (Yala et al. 2019; Shen et al. 2019), was utilized 
for the convolutional neural networks (CNN) for binary 
classification (He et al. 2016).  The network weights were 
initialized based on a model pre-trained on ImageNet, a 
process known as transfer learning.  Adam was selected as 
the optimizer, and categorical cross-entropy was employed 
as the loss function (learning rate = 0.01, weight decay = 
0.001).  The batch size was set at 64, and the number of 
epochs was set at 100.  The DL model underwent training 
and testing 10 times in one set, saving the probability value 
of breast cancer for each image in the test set after each run.  
The model was reinitialized for each iteration of the pro-
cess.

Assessment of the DL model
The diagnostic accuracy of the DL model was assessed 

using the mean Area Under the Curve (AUC) along with its 
95% confidence interval (CI).  To compare the diagnostic 
accuracy across different matrix sizes, the mean AUC value 
of the 512 × 512 dataset was compared with those of other 
matrix sizes.  In this study, the mean AUC values for each 

interpolation method at each matrix size were evaluated 
against the 512 × 512 matrix dataset.  A p-value of less than 
0.05 was considered statistically significant.  The Student’s 
t-test was employed for statistical significance testing.

Results
The sizes of the 103 breast cancer masses ranged from 

5 mm to 87 mm, with a mean of 20.9 mm and a standard 
deviation of 11.2 mm.  

Table 1 and Fig. 3 present the average AUC and the 
95% confidence interval (CI) of the AUC for the original 
DL model with a 512 × 512 matrix dataset, alongside 20 
DL models applying five different image interpolation 
methods to four datasets with varying matrix sizes.  The 
AUC for the original 512 × 512 matrix dataset DL model 
was 0.727, with a 95% CI of 0.712 to 0.742.  For the DL 
model with the downsampled 256 × 256 matrix dataset, the 
Lanczos interpolation method showed a significantly lower 
AUC compared to the original 512 × 512 matrix dataset DL 
model, as depicted in Fig. 3.  Similarly, for the DL model 
with the downsampled 128 × 128 matrix dataset, the 
Hamming and Lanczos interpolation methods exhibited sig-
nificantly lower AUC values than the original 512 × 512 
matrix dataset DL model.  For the DL models with the 
downsampled 64 × 64 and 32 × 32 matrix datasets, all five 
interpolation methods demonstrated significantly lower 
AUC values compared to the original 512 × 512 matrix 
dataset DL model.

Discussion
Our results indicate that the diagnostic performance of 

the DL model varies depending on the degree of downsam-
pling and the choice of interpolation methods.  This finding 
suggests that careful consideration of the appropriate degree 
of downsampling and the most suitable interpolation meth-
ods is crucial when preprocessing images for deep learning 
models.  In determining the appropriate degree of downs-
ampling, the spatial resolution must be considered relative 
to the size of the target lesion.  In our dataset, the mean 
diameter of breast cancer masses was 21.0 mm, equivalent 
to approximately 300 pixels in our tomosynthesis images.  
The size of microcalcifications in breast cancer, ranging 
from 0.1 to 1 mm (Henrot et al. 2014), corresponds to 1 to 
14 pixels in these images.  Reducing a 512 × 512 matrix 
size image to 64 × 64 through downsampling reduces the 
mean diameter of tumors and microcalcifications to approx-
imately 35 and fewer than 4 pixels, respectively.  As a 
result, characteristic morphologies of tumor-forming breast 
cancer, such as marginal irregularity, and of malignant cal-
cifications may be lost at this level of downsampling, 
directly impacting the diagnostic performance of the DL 
model.

The relationship between batch size and image data 
size is complementary; reducing the matrix size through 
downsampling allows for an increase in batch size.  A larger 
batch size offers several benefits, including more efficient 

Fig. 2.  Interpolation methods for an original 512 × 512 pixel 
image.

	 The appearance of the downsampled images varies de-
pending on the type of image interpolation method used.
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hardware resource utilization and the capacity to process 
more data simultaneously, potentially accelerating training 
and making the entire process more efficient (Lin 2022).  
Larger batch sizes provide a more accurate estimate of the 
gradient, and some research suggests that models trained 
with larger batch sizes may better generalize from training 
data to unseen data (Kandel and Castelli 2020).  Different 

image interpolation methods can also have varying impacts 
on diagnostic performance.

Our study has several limitations.  First, we investi-
gated the diagnostic performance of deep learning models 
with a fixed batch size.  As the difference in batch size 
affects learning rate and size optimization influences learn-
ing rate optimization (Bjorck et al. 2018; Lin 2022), the 
relationship between appropriate batch size and learning 
rate in DL warrants further investigation.  Second, some 
benign lesions in our study were diagnosed based on image 
analysis without follow-up, posing a potential risk of misdi-
agnosis.  Third, our dataset was derived from a single insti-
tution’s breast tomosynthesis images.  To generalize our 
findings, validation of the DL model with other external, 
independent datasets is necessary.  Fourth, while our study 
focused on DBT images of breast cancers, the appropriate 
downsampling size and interpolation method need to be 
independently evaluated when targeting different types of 
imaging modalities and diseases.

Conclusion
Our results suggest that careful consideration of the 

appropriate degree of downsampling and the choice of the 
most suitable interpolation methods is essential when pre-
processing images for deep learning models.  Both factors 
significantly affect the diagnostic performance of the DL 
model.
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Table 1.  The average AUC of our DL models in 5 matrix sizes and 5 interpolation methods.

ResNet50
(95%CI)
p-value

256 × 256 128 × 128 64 × 64 32 × 32

Nearest
0.728

(0.712-0.737)
P = 0.947

0.727
(0.716-0.745)

P = 0.972

0.671
(0.658-0.695)

P < 0.05

0.629
(0.602-0.647)

P < 0.05

Bilinear
0.723

(0.701-0.746)
P = 0.830

0.701
(0.685-0.717)

P = 0.056

0.690
(0.677-0.704)

P < 0.05

0.646
(0.613-0.680)

P < 0.05

Bicubic
0.747

(0.730-0.763)
P = 0.138

0.703
(0.681-0.724)

P = 0.078

0.662
(0.637-0.687)

P < 0.05

0.616
(0.579-0.653)

P < 0.05

Hamming
0.723

(0.703-0.743)
P = 0.786

0.688
(0.673-0.703)

P < 0.05

0.676
(0.655-0.696)

P < 0.05

0.655
(0.636-0.673)

P < 0.05

Lanczos
0.706

(0.693-0.719)
P < 0.05

0.688
(0.671-0.705)

P < 0.05

0.655
(0.647-0.663)

P < 0.05

0.641
(0.609-0.674)

P < 0.05

P-value results for the average AUC and 95% confidence interval of AUC, 512 × 512 obtained from 10 
iterations of training and testing in ResNet50 for 4 matrix sizes and 5 interpolation methods.  The p-value 
indicates statistical significance against AUC for the 512 × 512 dataset.  The average AUC with 95% CI in 
original matrix size (512 × 512 pixels) was 0.727 (0.712 - 0.742).

Fig. 3.  The average AUC of our DL models in 5 matrix sizes 
and 5 interpolation methods.  

	 The p-value indicates statistical significance against AUC 
for the 512 × 512 dataset.  *p < 0.05
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