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Recent studies have reported a correlation between ubiquitination or deubiquitination and cancer 
development.  But mechanisms underlying the roles of genes associated with E3 ubiquitin ligases and 
deubiquitinating enzymes (DUB) in liver cancer remain to be explored.  We analyzed and screened 
differentially expressed genes related to E3 ubiquitin ligases and DUB in liver cancer on the basis of public 
databases.  Cluster analysis was utilized to classify liver cancer samples into different subtypes.  Survival 
analysis, immune analysis, and pathway enrichment analysis were performed on the subtypes.  We 
constructed a protein-protein interaction network using STRING to screen hub genes.  Finally, we used the 
Connectivity Map (CMap) database to predict targeted small molecules.  The results show that a total of 
139 differentially expressed E3/DUB genes in liver cancer were screened.  Then, liver cancer was classified 
into two subtypes, cluster 1 and cluster 2, based on E3-related and DUB-related genes.  Patients in cluster 
1 had higher survival rates and immune levels than those in cluster 2.  Four hub genes (RPSA, RPS5, 
RPL30, and RPL8) significantly affecting the survival of the two subtypes of liver cancer patients were 
identified based on cluster 1 and cluster 2.  Finally, the CMap database predicted that small-molecule drugs 
including probenecid, dexamethasone, and etomidate may improve the prognosis of liver cancer patients.  
These findings may offer a reference for risk stratification studies and drug development in liver cancer.
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Introduction
Liver cancer is a common and lethal malignancy that 

poses a serious threat to human health around the world 
(Siegel  et  al .  2020).   Global Cancer Statist ics 
(GLOBOCAN) estimated 906,000 new cases of liver can-
cer and 830,000 deaths worldwide in 2020, with 632,000 
new cases occurring in men and 273,000 in women, and 
578,000 deaths occurring in men and 253,000 in women 
(Sung et al. 2021).  With the advancement of technology 
and the accumulation of medical experience in recent years, 
the treatment of liver cancer has shifted from primarily sur-
gical treatment to the comprehensive use of multiple meth-
ods (Anwanwan et al. 2020).  However, due to the various 
risk factors associated with liver cancer, the 5-year survival 
rate of liver cancer patients is only 12.5%, and the progno-

sis of liver cancer patients remains poor (Luo et al. 2021).  
Therefore, studying the regulatory mechanisms underlying 
liver cancer development and discovering new drug targets 
are of crucial importance for the diagnosis and treatment of 
liver cancer.

Ubiquitination is a post-translational modification in 
which E3 ubiquitin ligase catalyzes the final step of ubiqui-
tination, which is also a key step in ubiquitin conjugation, 
directly determining the substrate pathway mediated by 
ubiquitin (Buetow and Huang 2016; Rennie et al. 2020).  
Deubiquitinating enzymes (DUBs) can specifically hydro-
lyze ubiquitin molecules from ubiquitinated protein sub-
strates to maintain free ubiquitin levels in cells (Hussain et 
al. 2010; Nakamura 2018).  Previous studies have shown 
that abnormal expression of E3 ligases and DUBs is impli-
cated in adverse outcomes in a variety of cancers.  For 
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example, Li et al. (2021) presented that high expression of 
DUB ubiquitin specific peptidase 39 (USP39) and E3 ligase 
tripartite motif containing 26 (TRIM26) in hepatocellular 
carcinoma (HCC) tissues drives cancer cell proliferation 
and migration via manipulation of ZEB1 protein level.  In 

addition, several studies have shown that the ubiquitin sys-
tem involving E3 and DUB is critical in tumor prognosis.  
Xu et al. (2021b) found associations between the abnormal 
expression of multiple ubiquitination-related genes and the 
prognosis of lung adenocarcinoma patients, which can pre-

Fig. 1.  Screening and functional analysis of E3/DUB-related differentially expressed genes (DEGs).
 (A) Volcano plot of DEGs in liver cancer.  (B) Upset plot of DEGs and E3/DUB genes.  (C) The protein-protein interaction 

(PPI) network of E3/DUB DEGs.  (D) Gene Ontology (GO) enrichment analysis of E3/DUB DEGs.  (E) Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of E3/DUB DEGs.  (F) Chromosomal copy number 
variations (CNV) distribution of E3/DUB DEGs, where the outer circle represents the 24 chromosomes and the inner 
circle shows the distribution of CNV.
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dict the overall survival of patients.  Wang et al. (2023) 
found that USP39, a DUB family member, can reduce the 
degradation of β-catenin through its deubiquitination func-
tion and drive cell proliferation and migration through 
repression of splicing of E3 ligase TRIM26 in cancer.  
Moreover, ubiquitin ligases and DUBs can regulate patients’ 
immune response by interacting with other factors in vivo, 
thereby affecting cancer progression (Damgaard et al. 2012; 
Fiil et al. 2013; Hrdinka et al. 2016).  Therefore, under-
standing the ubiquitination status in liver cancer patients 
has important value in the diagnosis, monitoring, and 
exploration of tumor progression and changes in the 
immune microenvironment of cancer.

This study collected genes related to E3 and DUB in 
liver cancer from public databases.  Subsequently, a series 
of bioinformatics analyses (differential analysis, subgroup 
analysis, survival analysis, immune analysis, mutation anal-
ysis, and drug sensitivity analysis) were systematically con-
ducted to elucidate the mechanism of ubiquitination-related 
genes in liver cancer.  Some potential drug targets for lung 
cancer were identified.  This study used novel approaches 
to investigate the molecular mechanism of ubiquitination in 
liver cancer and targeted therapy.

Materials and Methods
Data collection 

RNA sequencing transcriptomic data and clinical data 
related to liver cancer were downloaded from The Cancer 
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/).  
The dataset included 374 liver cancer samples and 50 nor-
mal samples.  E3/DUB-related genes were identified from 
Integrated annotations for Ubiquitin and Ubiquitin-like 
Conjugation Database (IUUCD; https://iuucd.biocuckoo.
org/) (Xu et al. 2021b).

Screening and functional analysis of E3/DUB-related 
differentially expressed genes (DEGs)

Based on the liver cancer transcriptomic data (normal 
and tumor groups), the R package edgeR (Robinson et al. 
2010) was utilized for differential analysis [|log fold-change 
(FC) | > 1, False Discovery Rate (FDR) < 0.05] to identify 
DEGs in the tumor group.  Subsequently, these DEGs were 
overlapped with E3/DUB-related genes to obtain E3/DUB-
related DEGs in liver cancer.  The protein-protein interac-
tion (PPI) network, which reflected the intrinsic relationship 
between E3/DUB genes, was integrated and constructed 
using STRING (https://cn.string-db.org/cgi/input.pl).  Then, 
following previous research methods (Bian et al. 2021), 
Chi-square tests were conducted on the copy number varia-
tions (CNV) of E3/DUB-related DEGs in liver cancer based 
on CNV data from TCGA.  The R package RCircos (Zhang 
et al. 2013) was used to plot the specific location of these 
genes on chromosomes.  The R package clusterprofiler (Yu 
et al. 2012) was applied for Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses of these genes.

Identification and immune analysis of E3/DUB gene-based 
subtypes 

Based on expression data of E3/DUB DEGs, we per-
formed cluster analysis on tumor samples using the R pack-
age ConsensusClusterPlus (Hu et al. 2022).  Following that, 
we employed R package survival for survival analysis on 
samples from each cluster.  The ESTIMATE method was 
utilized to compute the ESTIMATE score, immune score, 
stromal score, and tumor purity of the samples from each 
cluster.  Additionally, according to gene expression levels in 
29 immune-related gene sets, we performed single-sample 
gene set enrichment analysis (ssGSEA) using the R pack-
age GSEAbase (Xu et al. 2021a).  We also calculated 
expression levels of immune checkpoint genes in the cluster 

Fig. 2.  Tumor subtype identification based on E3/DUB-related genes.
 (A) Gene typing cluster analysis of liver cancer samples.  (B) Survival analysis of E3/DUB-related subtypes.
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samples and plotted box plots.  

Gene set enrichment analysis (GSEA)
Following previous research methods (Yao et al. 

2021), we used GSEA software (http://software.broadinsti-
tute.org/gsea/index.jsp) and the c2.cp.kegg.  V 2022.1.  
Hs.symbols.gmt gene set database to perform GSEA on the 
mRNAs related to different groups using Java under 1,000 
random sample permutations.  

Mutation analysis
The corresponding somatic mutation information for 

liver cancer was downloaded from TCGA dataset.  Tumor 

mutation burden (TMB) was defined as the number of 
somatic, coding, base substitution, and insertion/deletion 
mutations per million bases in the genome detected using 
nonsynonymous and frame-shifting insertions and deletions 
(indels) at a 5% detection threshold.  We used the R pack-
age maftools (Xu et al. 2021a) to compute the number of 
somatic nonsynonymous point mutations in each sample.  
Subsequently, we performed Wilcoxon tests on the TMB 
values of different subtype groups and plotted violin plots.  
R package GenVisR (Skidmore et al. 2016) was applied to 
plot waterfall plots of the top 30 mutated genes in different 
subtype groups to present the mutation landscape.

Fig. 3.  Immune differences between E3/DUB ubiquitination subtypes.
 (A) Single-sample gene set enrichment analysis (ssGSEA) heatmap.  (B) Violin plot of the immune score, stromal score, 

ESTIMATE score, and tumor purity score.  (C) Box plot of immune checkpoints.  *P < 0.05, **P < 0.01, ***P < 0.001.
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Hub gene identification 
To explore the differences between gene subgroups, 

we employed the edgeR package to conduct differential 
analysis on data from cluster 1 and cluster 2 (|logFC| > 1.0, 
FDR < 0.05).  With cluster 1 as the control group, DEGs in 
cluster 2 were screened out.  We performed interaction 
analysis on DEGs in cluster 2 on the STRING website and 
generated a PPI network.  Subsequently, we used the 
CytoHubba plugin in Cytoscape to screen hub genes in the 
PPI network (using the MCC algorithm, node = 10).  Based 
on hub gene levels, we used timeROC package (Blanche et 
al. 2013) to draw corresponding receiver operation charac-
teristic (ROC) curves to predict whether patients have the 
disease based on gene expression.  Furthermore, we tested 
gene expression with an area under the curve (AUC) value 
greater than 0.7 in both tumor samples and normal samples, 
and plotted box plots to further verify the predictive results 
of the ROC.

Drug sensitivity analysis 
To identify new potential targets and more effective 

therapeutic drugs, we uploaded the top 150 upregulated 
genes from cluster 2 to the CMap database (https://clue.io/)   
to identify putative small molecule drugs for the treatment 
of liver cancer patients.  Drugs with negative scores indi-

cate that they can reverse the upregulated expression of the 
input genes (Zhu et al. 2022).

Results
E3/DUB-related DEGs in liver cancer 

By performing differential analysis on data from nor-
mal and tumor groups of liver cancer in TCGA, 4,932 
DEGs were identified (3,892 upregulated and 1,040 down-
regulated) (Fig. 1A).  Taking the intersection of DEGs and 
E3/DUB-related genes (1,024 genes), the upset plot illus-
trated that 139 E3/DUB DEGs were acquired in liver cancer 
(Fig. 1B).  The PPI network diagram presented 39 nodes 
and 76 interactions, indicating complex interactions 
between these E3/DUB DEGs (Fig. 1C).  To explore the 
functional features and biological effects of E3/DUB DEGs, 
we performed GO and KEGG enrichment analyses.  The 
GO enrichment results showed substantial enrichment of 
E3/DUB DEGs in biological functions such as protein aut-
oubiquitination, protein deubiquitination, and positive regu-
lation of cellular catabolic processes (Fig. 1D).  The KEGG 
enrichment analysis revealed the enrichment of genes in 
ubiquitin-mediated proteolysis, JAK-STAT signaling, TNF 
signaling, and Notch signaling pathways (Fig. 1E).  The 
chromosome distribution map revealed that the CNVs of 
E3/DUB DEGs were distributed in multiple locations of the 

Fig. 4.  Gene set enrichment analysis (GSEA) results.
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chromosome (except for chromosomes 11 and 13), and 
DEGs had copy number gains or losses (Fig. 1F).  Taken 
together, these analyses suggested that these E3/DUB DEGs 
were implicated in liver cancer progression.

Identification of tumor subtypes based on E3/DUB 
ubiquitination-related genes

Following cluster results of the differential expression 
matrix of E3/DUB-related genes, samples were divided into 
cluster 1 and cluster 2 (Fig. 2A).  Kaplan-Meier (K-M) sur-
vival analysis was subsequently done on samples from clus-
ter 1 and cluster 2.  As shown in Fig. 2B, cluster 1 had a 
higher survival rate than cluster 2.

Immune differences between E3/DUB ubiquitination subtypes
The ESTIMATE algorithm can estimate stromal and 

immune cells in malignant tumors, inferring tumor purity 
from the unique properties of transcriptional profiles.  ssG-
SEA heatmap depicted that immune level of cluster 2 was 
lower than that of cluster 1 (Fig. 3A).  The violin plot 
showed that immune, stromal, and ESTIMATE scores of 
cluster 2 were noticeably lower, and the tumor purity score 

was significantly higher as compared with cluster 1 (Fig. 
3B).  Immune checkpoint box plot presented that the 
expression levels of most immune checkpoints (TNFSF13B, 
CD160, CD200, CD200R1, CD27, CD274, CD28, CD40, 
CD40LG, CD80,  IDO2,  PDCD1LG2,  TMIGD2, 
TNFRSF25, TNFRSF8, TNFSF18) in cluster 2 were signifi-
cantly lower than in cluster 1, but ADORA2A and 
TNFRSF18 levels in cluster 2 were notably higher than in 
cluster1 (Fig. 3C).  Taken together, these analyses sug-
gested that cluster 1 had a higher immune level than cluster 
2.  The higher immune, stromal, and ESTIMATE scores, as 
well as immune checkpoint expression levels may be 
related to a higher survival rate in the cluster 1 subtype.

Pathway enrichment differences between different subtypes
GSEA unveiled the main enrichment of cluster 2 in 

pathways such as Pyrimidine Metabolism, Oxidative 
Phosphorylation, Glutathione Metabolism, and Other 
Glycan Degradation (Fig. 4).  As a result, we speculated 
that differences in prognosis between the two groups may 
be regulated by life activities such as pyrimidine metabo-
lism, oxidative phosphorylation, glutathione metabolism, 

Fig. 5.  Tumor mutation analysis.
 (A) Tumor mutation burden (TMB).  (B) TMB waterfall plot of the top 30 mutated genes in cluster 1.  (C) TMB water-

fall plot of the top 30 mutated genes in cluster 2.
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and other glycan degradation.

Mutational differences in different subtypes 
To explore the tumor mutation situation in liver cancer 

patients, we analyzed the TMB of liver cancer samples 
grouped by different subtypes.  TMB of cluster 2 was sig-

nificantly higher than that of cluster 1 (Fig. 5A).  
Subsequently, we analyzed the mutation frequency of the 
top 30 genes with single nucleotide variants (SNVs) in the 
dataset and found that the mutation frequency of some 
genes varied between the two groups.  TP53 had the highest 
mutation frequency in cluster 1, while CTNNB1 had the 

Fig. 6.  Subtype grouping differential analysis and gene interactions.
 (A) The protein-protein interaction (PPI) network of differentially expressed genes (DEGs) between different subtypes.  

(B) PPI network of hub genes.  (C) Receiver operating characteristic (ROC) curve of hub genes.  (D) Box plots showing 
the expression levels of the 4 hub genes with area under the curve (AUC) values greater than 0.7 in tumor and normal 
samples.
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highest mutation frequency in cluster 2 (Fig. 5B, C).

Differences in key hub genes between different subtypes 
To explore the differences between gene subgroups, 

we conducted differential analysis on the data from cluster 
1 and cluster 2.  The results showed that cluster 2 contained 
1,829 DEGs, including 609 upregulated genes and 1,220 
downregulated genes (Supplementary Table S1).  The PPI 
network showed complex interactions between DEGs.  
Using an interaction score threshold of > 0.9, we obtained 
553 nodes and 1,798 associated interaction connections 
(Fig. 6A).  Furthermore, we counted the top 10 hub genes 
in the PPI network (RPSA, RPS19, RPL32, RPS5, RPL30, 
RPS20, RPL14, RPL13, RPL8, and RPL7), and drew a new 
PPI network (Fig. 6B).  Further analysis showed that the 
AUC values of these 10 hub genes were all greater than 
0.519, and that the AUC values of RPSA, RPS5, RPL30, 
and RPL8 were all greater than 0.7 (Fig. 6C), indicating that 
these genes could be good predictors of liver cancer.  
Similarly, the box plot revealed that levels of these four hub 
genes with AUC values greater than 0.7 were notably 
higher in tumor samples than in normal samples (Fig. 6D).  
Based on these analyses, we speculated that the high 
expression of four hub genes in tumor samples was impli-
cated in the development of liver cancer.

Drug sensitivity analysis 
To explore potential therapeutic targets and more 

effective drugs for liver cancer, we used the CMap database 
to predict the top 150 upregulated genes in cluster 2.  The 
results showed that there were six targeted small-molecule 
drugs with potential therapeutic effects on liver cancer, 
namely probenecid, sitagliptin, sibutramine, dopamine, 
dexamethasone, and etomidate (Table 1).  Moreover, the 
scores of these six candidate small-molecule drugs were 
negative, indicating that these drugs may act on multiple 
target genes in liver cancer.  Combined with previous stud-
ies (Zhu et al. 2022), drugs with negative scores can reverse 
their upregulation of genes.  Therefore, we speculated that 
these six candidate small-molecule drugs could improve 
survival in liver cancer patients.

Discussion
E3 ubiquitin ligases and DUBs are pivotal participants 

of the ubiquitin-proteasome system, where they play critical 
roles in cellular protein homeostasis (Satija et al. 2013).  
Abnormal expression of E3 ligases and DUBs has been 
implicated in poor outcomes of various cancers, including 
glioblastoma (Bellail et al. 2012), breast cancer (Lee et al. 
2017), and HCC (Li et al. 2021).  Feng et al. (2020) 
reported that the E3 ubiquitin ligase A20 can suppress HCC 
cell proliferation and migration by downregulating glyco-
lytic enzyme phosphofructokinase-1 (PFK1).  Chen et al. 
(2023) demonstrated that overexpression of DUB ubiquitin 
specific peptidase 15 (USP15) facilitates growth and migra-
tion and is implicated in unfavorable prognosis of non-
small cell lung cancer patients.  However, research on ubiq-
uitination- and deubiquitination-related genes is still 
limited.  Therefore, this study stratified liver cancer patients 
based on E3-related and DUB-related genes and identified 
effective biomarkers for prognosis prediction and treatment.  

In this study, a comprehensive analysis of E3-related 
and DUB-related genes in liver cancer was conducted using 
public databases, and 139 E3/DUB DEGs were identified, 
which exhibited complex interactions among each other.  
Enrichment analysis revealed the main enrichment of these 
genes in life activities like protein ubiquitination, deubiqui-
tination, and cellular catabolism.  In addition, over the past 
few decades, there has been increasing research on the 
tumor microenvironment.  Immune cells and stromal cells 
are two major types of tumor components that are of para-
mount significance in the diagnostic and prognostic assess-
ment of tumors.  Therefore, as early as 2013, Yoshihara et 
al. (2013) developed an algorithm (ESTIMATE) to estimate 
the immune cell components in tumor tissues.  In this study, 
it was found that cluster 1 had a higher survival rate, 
immune score, and stromal score than cluster 2.  As a result, 
it was speculated that patients with higher immune compo-
nents had a better prognosis, which was congruous with 
previous research (Lei et al. 2021).

To further analyze the reasons for the differences in 
survival among gene subgroups, we conducted differential 
expression analysis on the genes of each subgroup and con-
structed a PPI network.  From this network, we identified 
four hub genes (RPSA, RPS5, RPL30, and RPL8) with AUC 

Table 1.  CMap prediction results.

Score Name Description Target

−98.31 probenecid Uricosuric blocker SLC22A11, SLC22A8
−97.54 sitagliptin Dipeptidyl peptidase inhibitor SLC22A8
−97.02 sibutramine Serotonin reuptake inhibitor SLC6A2
−96.09 dopamine Dopamine receptor agonist SLC6A2

−95.91 dexamethasone Glucocorticoid receptor 
agonist NR0B1

−95.43 etomidate GABA receptor modulator GABRA4
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values greater than 0.7 that were significantly overex-
pressed in tumors.  Aberrant expression of these genes is 
implicated in tumor occurrence and development.  
Membrane receptor ribosomal protein RPSA can promote 
cancer progression by stimulating cancer cell migration and 
invasion (Lefebvre et al. 2020).  Wu et al. (2019) found that 
high expression of RPSA can affect the migration and inva-
sion of pancreatic cancer cell lines via manipulation of 
PI3K and MAPK signaling pathways, and patients with 
high RPSA expression often have unfavorable prognoses.  
However, inhibiting RPSA significantly weakens invasion 
and migration and leads to a decrease of p-AKT and 
p-ERK1/2.  RPS5 is also a ribosomal protein gene and a 
haploinsufficient tumor repressor for various cancer types 
(Fancello et al. 2017).  Pan et al. (2022) identified RPS5 as 
a key gene in circulating tumor cells of colorectal cancer 
through bioinformatics analysis.  RPL30 and RPL8 are also 
important ribosomal proteins.  Previous studies have found 
that the ferroptosis marker RPL8 is overexpressed in multi-
ple cancers.  For example, Fan et al. (2023) found through 
comprehensive multi-omics analysis that higher RPL8 
expression is associated with shorter overall survival in 
HCC patients and that RPL8 may be a fresh therapeutic tar-
get for the treatment and prognosis evaluation.  Hence, the 
four hub genes identified in this study can affect the prog-
nosis of multiple cancers and have the potential to become 
new biological markers that influence the prognosis of liver 
cancer.

To identify new potential targets and more effective 
therapeutic drugs, we screened the CMap database and 
identified six potential small molecule drugs: probenecid, 
sitagliptin, sibutramine, dopamine, dexamethasone, and 
etomidate.  Previous studies have shown that probenecid 
can sensitize neuroblastoma cancer stem cells to cisplatin, 
suggesting that combining probenecid with cisplatin could 
be a new cancer treatment strategy (Campos-Arroyo et al. 
2016).  Additionally, Salah et al. (2021) found that sita-
gliptin exerts its anti-tumor activity by inducing apoptosis 
and inhibiting oxidative stress and inflammation.  Similarly, 
dexamethasone and other glucocorticoids have been widely 
used in the treatment of cancer.  For example, Motafeghi et 
al. (2023) found that dexamethasone alone or in combina-
tion with etoposide can induce oxidative stress and exert 
anti-cancer effects by disrupting DNA.  In addition, coen-
zyme Q10 exerts antioxidant effects on dexamethasone-
induced liver toxicity through the improvement of mito-
chondrial function and reduction of cysteine dioxygenase-3 
activity.  Based on these findings, we speculated that these 
small molecule drugs may be potential anti-cancer drugs for 
liver cancer treatment.

In summary, this study analyzed E3-related and DUB-
related genes in liver cancer and used their expression to 
cluster liver cancer patients into subtypes.  We then per-
formed survival analysis, immune analysis, differential 
analysis, enrichment analysis, and drug sensitivity predic-
tion on different subtypes.  The results not only predict the 

prognosis and immune status of liver cancer patients, but 
also have certain guiding significance for the management 
of liver cancer.  However, this study still has some limita-
tions, particularly the mechanisms of the small molecule 
targeted drugs predicted in this study in liver cancer, which 
requires further investigation.
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