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As evidence of risk factors for severe cases of coronavirus disease 2019 (COVID-19) was uncertain in 
early phases of the pandemic, the development of an efficient predictive model for severe cases to triage 
high-risk individuals represented an urgent yet challenging issue.  It is crucial to select appropriate 
statistical models when available data and evidence are limited.  This study was conducted to assess the 
accuracy of different statistical models in predicting severe cases using demographic data from patients 
with COVID-19 prior to the emergence of consequential variants.  We analyzed data from 929 consecutive 
patients diagnosed with COVID-19 prior to March 2021, including their age, sex, body mass index, and past 
medical histories, and compared areas under the receiver operating characteristic curve (ROC AUC) 
between different statistical models.  The random forest (RF) model, deep learning (DL) models with not 
too many neurons, and naïve Bayes model exhibited AUC measures of > 0.70 with the validation datasets.  
The naïve Bayes model performed the best with the AUC measures of > 0.80.  The accuracies in RF were 
more robust with narrower distribution of AUC measures compared to those in DL.  The benefit of 
performing feature selection with a training dataset before building models was seen in some models, but 
not in all models.  In summary, the naïve Bayes and RF models exhibited ideal predictive performance 
even with limited available data.  The benefit of performing feature selection before building models with 
limited data resources depended on machine learning methods and parameters.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic, 

caused by the severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), has raised global public health con-
cerns since 2019 (Huang et al. 2020; Zhu et al. 2020).  In 
early stages of the pandemic, each country had to optimize 
public health strategies to quarantine infected individuals.  
In Japan, each prefectural government has converted pre-
existing facilities, such as non-governmental hotels, into 
quarantine stations (Akashi et al. 2022; Machida and Wada 
2022).  Many studies have been conducted to build effec-
tive prediction models for the identification of potential 

severe cases of COVID-19 (Gallo Marin et al. 2021).  The 
effective pre-admission triage of infected individuals to 
hospitals for high-risk patients or quarantine facilities for 
low-risk patients represented an important issue during the 
pandemic.  Consequently, appropriate statistical models had 
to be developed to predict severe COVID-19 cases from the 
limited data available during early stages of the pandemic.  
To date, most predictive models have incorporated clinical 
or laboratory COVID-19 infection data (Li et al. 2020; Sun 
et al. 2020; Wang et al. 2020; Gude-Sampedro et al. 2021; 
Meng et al. 2021).  Many of these models have achieved 
moderate to high predictive accuracy with areas under the 
receiver operating characteristic curve (ROC AUC) exceed-
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ing 0.70 (Metz 1978).  However, the symptoms differ with 
respect to the number of days from infection (Lauer et al. 
2020), and incorporating this information into predictive 
models requires careful consideration of how and when to 
collect the data.  Furthermore, laboratory and imaging data 
were unavailable for most cases during the initial triage 
step.  Another issue is the selection of an appropriate statis-
tical model for the predictive task.  Conventional statistical 
models include multivariate analysis with a logistic regres-
sion model, as well as machine learning (ML)-based mod-
els.  However, few studies to date have employed real-
world data to evaluate which statistical models can more 
accurately predict a severe clinical course given limited 
available data and evidence of risk factors (Xiong et al. 
2022; Ustebay et al. 2023).  Moreover, the accuracy and 
robustness of Bayesian models, such as the naïve Bayes 
classification model, in the prediction of severe COVID-19 
cases remains unknown.  Therefore, the present study was 
conducted to evaluate the accuracy of predicting a severe 
disease course in different statistical models using basic 
demographic data and medical histories of COVID-19 
patients obtained prior to the emergence of consequential 
variant strains.

Materials and Methods
Data source and participants

The present study utilized data of individuals infected 
with COVID-19 who were designated to the largest quaran-
tine hotel in Miyagi Prefecture between December 2020 
and February 2021 (Tadano et al. 2023).  Because the study 
period preceded the start of the mass vaccination campaign, 
none of the participants had previously been vaccinated 
against SARS-CoV-2.  This period also preceded the first 
occurrence of the delta variant in Japan, which may have 
caused severe disease profiles (Hu et al. 2022; Ong et al. 
2022).

All participants were assessed upon preadmission 
interviews by local government health workers to be (1) 
clinically mild and (2) without severe conditions of medical 
history that may predispose them to life-threatening events 
due to COVID-19 infection.  Detailed eligibility criteria for 
admission to the isolation facility have been reported previ-
ously (Tadano et al. 2023).  Specifically, scores were calcu-
lated for each patient based on a combination of potential 
risk factors including older age, pregnancy, occurrence of 
serious conditions, obesity, smoking habits, and past medi-
cal history of diabetes mellitus (DM), bronchial asthma 
(BA), chronic obstructive pulmonary disease (COPD), 
uncontrolled hypertension, cardiovascular diseases (CVD), 
chronic kidney diseases (CKD), and malignancies.  
Symptomatic patients were allowed to leave the facility 
once they lacked antipyretics or respiratory symptoms (1) 
10 days after onset and (2) 72 hours after the resolution of 
fever.  Asymptomatic patients were permitted to leave the 
facility 10 days after testing for SARS-CoV-2.

Body mass index (BMI) data were provided for 

approximately 40% of the admitted patients.  Patients with 
BMI data were used as the original cohort, and those with-
out BMI data were used for the sensitivity analyses.  A flow 
diagram of the study design is presented in Fig. 1.

Collected variables and outcome
Variables considered prior to feature selection with the 

least absolute shrinkage and selection operator (LASSO) 
included age, sex, nationality, BMI, antibiotic prescription 
before admission, and current smoking status, and medical 
history of the following 14 conditions: hypertension, DM, 
dyslipidemia, BA, heart disease, CVD, malignancies, 
COPD, CKD, hyperuricemia (HU), liver disease, psychiat-
ric disease, sleep apnea syndrome (SAS), and atopy.  The 
evaluated outcome was the occurrence of hypoxia with a 
prolonged decrease in percutaneous arterial oxygen satura-
tion (SpO2) ≤ 93%.

Statistical analysis
Machine learning process in this study was consisted 

of the following steps: (1) data preprocessing with z-score 
normalization, (2) data splitting into a training and valida-
tion dataset, (3) feature selection with a training dataset, (4) 
model training, and (5) cross-validation with test dataset for 
accuracy estimation.  As the data preprocessing to improve 
the prediction performance, each variable was standardized 
using z-score as Z = (χ − M) ⁄ SD , where χ is each patient’s 
raw score, M is the mean of the population, and SD is the 
standard deviation (Andrade 2021; Tanaka et al. 2022).  
Before constructing supervised ML models to predict the 
development of severe COVID-19, the properties to be 
incorporated into these models were determined using 
LASSO to minimize dimensionality and maximize predic-
tive power (Yamada et al. 2014).  In the LASSO, ℓ1 norm 
was used as the penalty, and features with calculated coeffi-
cients that were reduced to zero were excluded from subse-
quent ML models.  Feature selection was performed only 
with the training dataset and not with the validation dataset 
to avoid data leakage with excessively optimistic evaluation 
caused by using the whole dataset before cross-validation 
in building models (Yagis et al. 2021).  In the subsequent 
cross-validation step, 60% of the data were allocated as the 
training dataset, with the remaining 40% reserved for vali-
dation.  The following supervised ML models were pre-
pared: linear discriminant analysis (LDA), nonlinear dis-
crimination with logistic regression (LR), a tree-based 
model with classification and regression trees (CART), sup-
port vector machines (SVM), random forest (RF), a single-
hidden layer neural network (NN), deep learning (DL) 
models with multiple hidden layers, and naïve Bayes mod-
els with and without Kernel density estimation for non-
parametrically estimating the probability density function 
(Uddin et al. 2019).  In the SVM model, three-fold cross-
validation was performed.  In the NN models, validation 
accuracies were obtained using 100 epochs with 3-fold 
cross-validation.  In the RF model, square-rooted quantities 
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of incorporated features were randomly selected to build 
500 decision trees.  The number of decision trees was deter-
mined after checking for the relationship between the error 
rate and the number of decision trees.  In the single-hidden-
layer NN model, five units were prepared in the hidden 
layer.  Multiple patterns for the numbers of hidden layers 
and neurons in each layer were tested for the single-hidden-
layer NN and DL models, with predictive accuracies com-
pared by ROC AUC using the DeLong test (DeLong et al. 
1988).  Multiple comparisons of the AUC measures were 
not adjusted based on the exploratory nature of the present 
study.  For the ML model with the highest predictive accu-
racy, the importance of preliminary feature selection was 
verified by calculating AUC with and without said selec-
tion.  To verify the robustness of AUC measures, 20-fold 
iterated measurements were performed for the NN, DL, and 
RF models.  Comparisons of repeated AUC measures 
between models with and without feature selection were 
performed using the Mann-Whitney U test.  The AUC mea-
surements were reperformed after randomly reallocating 

training and validation datasets in the first cohort with BMI 
data.  To verify the robustness of the finding, AUC mea-
surements were further performed in the second cohort 
without BMI data.  All statistical analyses were performed 
using Python 3.11.1, and R version 4.1.3 (R Foundation, 
Vienna, Austria).

Ethics
This study was approved by the institutional review 

board of Tohoku University Graduate School of Medicine 
(approval number: 2021-1-1178).  Written informed consent 
was waived by the review board because of the anonymity 
of the present study and to prevent unnecessary risks of 
transmitting the infection by obtaining written forms from 
the participants.  All process of the study was performed in 
accordance with the latest version of the Declaration of 
Helsinki as revised in 2013 (World Medical Association 
2013).

Fig. 1.  Flow diagram of study design.
 A total of 929 patients with mild to moderate coronavirus disease 2019 (COVID-19) symptoms, admitted to a  

quarantine hotel between Dec. 2020 and Feb. 2021, were enrolled in this study.  Patients were divided into cohorts of 
358 and 571 individuals based on the presence or absence of body mass index (BMI) data, respectively.  For each  
cohort, several sensitivity analyses were performed to evaluate the robustness of model performance.  Feature selection 
using least absolute shrinkage and selection operator (LASSO) before building models was performed only with the 
training dataset to avoid data leakage.  ROC AUC, area under the receiver operating characteristic curve; HTN,  
hypertension; DM, diabetes mellitus; DL, dyslipidemia; BA bronchial asthma; CVD, cardiovascular disease; COPD, 
chronic obstructive pulmonary disease; CKD, chronic kidney disease; HU, hyperuricemia; SAS, sleep apnea syndrome; 
LDA, linear discriminant analysis; LR, logistic regression; SVM, Support Vector Machines; CART, Classification and 
Regression Trees; NN, neutral network; DL, deep learning.
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Results
Overall participants

Of the 929 patients with reliable daily SpO2 measure-
ments enrolled during the study period, 358 had BMI data 
and the remaining 571 did not.  Fifteen patients (1.6%) 
were transferred from hospitals to quarantine facilities for 
continued isolation.  Previously reported demographic data 
(Tadano et al. 2023) indicate that although none of the 
patients were hypoxic (with SpO2 ≤ 93%) on admission to 
the isolation facility, 63 (6.8%) developed hypoxia at a 
median of 8 days (interquartile range: 6-10 days) from the 
clinical onset.

First cohort
The first cohort included data from 358 individuals 

(197 males and 161 females), including 96 current smokers, 
with evaluated variables and reliable SpO2 measurement 
results.  The median and interquartile range (IQR; 25-75 
percentile) of age at hotel admission were 39 and 24-52 
years, respectively.  Among them, 341 were of Japanese 
nationality, 15 were Asian from countries other than Japan, 

and 2 were Caucasians.  The following prevalence of medi-
cal histories was reported: 60 with hypertension, 16 with 
diabetes mellitus, 34 with dyslipidemia, 24 with BA, 14 
with heart disease, 3 with CVD, 9 with malignancies, 2 
with COPD, 2 with CKD, 6 with HU, 3 with liver diseases, 
and 4 with psychiatric diseases.  The median BMI was 
22.67 (IQR; 20.30-26.35).  There were 23 patients (6.4%) 
who developed hypoxia following clinical onset.  The over-
all cohort was randomly divided into a training dataset (215 
individuals, including 15 who developed hypoxia) and a 
validation dataset (143 individuals, including 8 who devel-
oped hypoxia).

Feature selection
In the initial feature selection stage using LASSO with 

the training dataset, the following pre-infection variables 
produced non-zero coefficients and were used in the subse-
quent ML models: age (Wald χ2 = 4.65; p = 0.0310), BMI (χ2 
= 5.43; p = 0.0198), sex (χ2 = 2.27; p = 0.1318), history of 
hypertension (χ2 = 0.12; p = 0.7249), history of DM (χ2 = 
2.89; p = 0.0893), history of BA (χ2 = 0.16; p = 0.6866), 
history of HU (χ2 = 0.46; p = 0.4967), and antibiotic pre-

 Table 1.  Area under the receiver operating characteristic curve (ROC AUC) measures with different machine learning models and 
parameters (original dataset).

Models ML method Parameters
AUC (95% CI)

Feature selection: Done Feature selection: Not done*

Model 1 Liner discriminant analysis - 0.671 (0.462-0.881) 0.671 (0.462-0.881)
Model 2 Nonlinear discrimination Logistic regression model 0.522 (0.215-0.830) 0.540 (0.257-0.824)
Model 3 SVM 3-fold cross validation 0.594 (0.359-0.830) 0.594 (0.359-0.830)
Model 4 CART - 0.763 (0.595-0.932) 0.763 (0.595-0.932)
Model 5 Random Forest 500 decision trees 0.753 (0.645-0.860) 0.723 (0.622-0.823)
Model 6.1 Single-HL NN 5 units in the hidden layer 0.664 (0.455-0.873) 0.718 (0.546-0.890)
Model 6.2 Single-HL NN 10 units in the hidden layer 0.671 (0.464-0.879) 0.721 (0.551-0.890)
Model 7.1 Two-HL NN 2 HLs with [2, 2] neurons 0.763 (0.568-0.958) 0.722 (0.512-0.932)
Model 7,2 Two-HL NN 2 HLs with [3, 2] neurons 0.735 (0.596-0.875) 0.585 (0.289-0.881)
Model 7.3 Two-HL NN 2 HLs with [5, 3] neurons 0.581 (0.313-0.849) 0.590 (0.380-0.800)
Model 7.4 Two-HL NN 2 HLs with [10, 5] neurons 0.585 (0.347-0.824) 0.705 (0.401-1.000)
Model 7.5 Deep Learning 3 HLs with [4, 3, 2] neurons 0.705 (0.536-0.873) 0.681 (0.420-0.941)
Model 7.6 Deep Learning 3 HLs with [15, 10, 5] neurons 0.676 (0.534-0.818) 0.827 (0.700-0.954)
Model 7.7 Deep Learning 3 HLs with [30, 20, 10] neurons 0.491 (0.259-0.722) 0.670 (0.411-0.930)
Model 7.8 Deep Learning 3 HLs with [45, 30, 15] neurons 0.596 (0.355-0.838) 0.568 (0.282-0.853)
Model 7.9 Deep Learning 5 HLs with [50, 40, 30, 20, 10] neurons 0.602 (0.377-0.826) 0.541 (0.252-0.829)
Model 8.1 Naïve Bayes Using Kernel density estimation 0.856 (0.744-0.967) 0.868 (0.803-0.932)
Model 8.2 Naïve Bayes Not using Kernel density estimation 0.825 (0.715-0.935) 0.794 (0.708-0.881)

The AUC measure in each machine learning (ML) model was obtained with or without feature selection by least absolute shrinkage 
and selection operator (LASSO) using the training dataset.  Feature selection with LASSO was performed with the training dataset 
before building each ML model to reduce dimensionality, with eight eligible features identified with nonzero coefficients [i.e., age, 
sex, body mass index (BMI), hypertension (HTN), diabetes mellitus (DM), bronchial asthma (BA), hyperuricemia (HU), and  
antibiotics].  The ML models were built based on a training dataset of 215 individuals, and AUC measures were obtained from the 
validation dataset encompassing the 143 remaining individuals.  For all models, the occurrence of prolonged decrement in SpO2 
measures ≤ 93% was used as the binary outcome.
CART, Classification and Regression Trees; HL, hidden layer; NN, neural network; SVM, Support Vector Machines.
*All 20 features before feature selection by LASSO were used in these models.
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scription before admission (χ2 = 0.55; p = 0.4577).  All 
other variables produced coefficients of zero and were 
eliminated from the subsequent ML models.  For the naïve 
Bayes models, variables producing variance errors were 
further excluded.

AUC measures for ML models (original data configuration)
Table 1 lists the obtained AUC measures and 95% 

confidence intervals obtained for each ML model using the 
validation dataset for the first cohort.  The linear discrimi-
nator (AUC, 0.671; p = 0.0525), logistic regression (AUC, 
0.522; p = 0.5852), SVM (AUC, 0.594; p = 0.1863), and 
DL models with too many hidden layers or neurons failed 
to show a significant prediction accuracy.  The highest AUC 
measures were obtained with the naïve Bayes model, with 
both configurations with and without kernel density estima-
tion exhibiting AUC measures greater than 0.80 (p = 0.0004 
with kernel density estimation and p = 0.0010 without it).  
In the NN and DL models, AUC measures largely differed 
according to parameters such as the numbers of hidden lay-
ers and neurons, with too many of either resulting in lower 
AUC measures, possibly reflecting overfitting of the mod-
els.  The ROC curves obtained by the evaluated models are 
presented in Fig. 2, suggesting the superiority of the naïve 
Bayes model over the other models.

Next, to decide the optimal number of trees in RF 

model, the relationship between the number of trees and the 
errors in prediction were evaluated for three times with dif-
ferent random seeds to determine the optimal number of 
trees for a stable prediction (Fig. 3).  In obtaining the errors 
in these analyses, the outcome was used as a dummy vari-
able.  The obtained results indicated that approximately 300 
trees would realize minimal error rate, and the error rate 
will not decrease by further increasing the number of trees.  
Based on this finding, the number of trees in RF was set 
with 500 in the subsequent sensitivity analyses.

Repeated AUC measures with NN, DL, and RF models
To determine the variability of AUC measures with the 

NN, DL, and RF models, 20-fold repeated AUC measure-
ments with the validation dataset were performed with the 
NN models with two hidden layers (of [3, 2] neurons or [10, 
5] neurons), a DL model with three hidden layers (of [4, 3, 
2] neurons), and an RF model.  The distribution of AUC 
measurements is depicted in Fig. 4.  These measures were 
more widely distributed with the NN and DL models irre-
spective of parameters than with the RF model, suggesting 
the high reliability and reproducibility of the RF model.  
The benefit of performing feature selection with the training 
dataset before building models depended on the types of 
ML model and the parameters.

Sensitivity analysis with randomly reassigned training and 
validation datasets

Next, a sensitivity analysis with randomly changed 

Fig. 2.  The receiver operating characteristic (ROC) curves 
with evaluated machine learning (ML) models for  
predicting severe COVID-19 cases.

 The conventional linear regression model (Model 2)  
exhibited poor AUC measures below 0.60.  Other ML 
models produced AUC measures greater than 0.70 when 
the parameters were appropriately assigned.  Especially, 
the naïve Bayes models exhibited AUC measures of > 
0.80.  CART, classification and regression trees; LDA, 
linear discriminant analysis; LR, logistic regression; NN, 
neural network; RF, random forest.  

Fig. 3.  Relationship between the number of trees in random 
forest (RF) model and predictive error.

 As the predictive error was suggested to decrease with an 
increased number of trees in RF model, the relationship 
between the number of trees and the predictive error rate 
was evaluated for three times to determine the optimal 
number of trees for a stable prediction.  The obtained line 
graphs suggested that approximately 300 trees realize 
minimal error rate, and the error rate was stabilized 
above this number of trees.
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datasets for training (215 individuals, including 13 with the 
primary outcome episode) and validation (143 individuals, 
including 10 with the primary outcome episode) was per-
formed to verify the robustness of the present findings.  The 
AUC measurements obtained using the changed datasets 
are listed in Table 2.  Again, the RF model, DL models with 
small number or neurons, and naïve Bayes models exhib-
ited robust predictive accuracies with moderate-to-high lev-
els of AUC measures greater than 0.70.  In particular, the 
naïve Bayes models again achieved the highest AUC mea-
sures, exceeding 0.80.  These models were the only models 
that showed AUC measures greater than 0.80 for both data 
configurations.

Second cohort
Finally, to further evaluate the reproducibility of the 

results, another sensitivity analysis was performed with the 
571 patients without available BMI data.  Among this 
cohort, 40 patients (7.0%) developed hypoxia following 
clinical onset.  Sixty percent of this cohort was randomly 
allocated for the training dataset (343 individuals, including 
23 patients who developed hypoxia), with the remaining 
40% reserved for the validation dataset (228 individuals, 
including 17 patients who developed hypoxia).  First, fea-
ture selection using LASSO with the training dataset identi-
fied the following six characteristics with non-zero coeffi-
cients: age, sex, dyslipidemia, heart disease, liver disease, 
and psychiatric disease.  The AUC measures obtained with 
different ML-based models by using these characteristics 
are listed in Table 3.  As in the previous analyses, the naïve 

Bayes models, NN models with not too many hidden layers 
or neurons, and RF model exhibited moderate-to-high AUC 
measures of > 0.70, with the naïve Bayes models showing 
the highest AUC.

Discussion
In the present study, different types of prediction mod-

els based on the conventional logistic regression model and 
other ML models were comprehensively evaluated, and 
their accuracies were compared in the prediction of severe 
conditions using only pre-infection data.  Although the 
models in this study did not use data directly pertaining to 
COVID-19-related symptoms, most of them exhibited 
moderate-to-high AUC measures exceeding 0.70.  In partic-
ular, the naïve Bayes models exhibited the highest AUC 
measures, exceeding 0.80, in all evaluated data configura-
tions.  The findings suggested that some ML-based models, 
including the RF, DL, and naïve Bayes models, would real-
ize higher AUC measures compared to conventional logistic 
regression model even with limited data resources in size 
and variables.  These ML-based predictive models may 
contribute to the initial triage stage of public health agen-
cies when predicting outcomes in the absence of reliable 
data and evidence of risk factors, especially in early phases 
of a pandemic.  Other notable findings of the present study 
include the wide distribution of expected AUC measures 
with NN and DL models depending on their parameters, 
such as the numbers of hidden layers and neurons.  These 
findings collectively indicate the excellent usability of the 
RF and naïve Bayes models in predicting severe COVID-

Fig. 4.  Variability of AUC measures based on different machine learning (ML) models.
 The distributions shown with eight different ML models were obtained from 20 iterations of ML simulations among 358 

patients with body mass index (BMI) data.  The AUC measures obtained with random forest (RF) exhibited narrower 
distributions than those obtained via deep learning (DL) models, implying greater robustness of the former.  The AUC 
measure obtained with the RF method was higher when preliminary feature selection was performed with least absolute 
shrinkage and selection operator (LASSO) (p < 0.0001), demonstrating the importance of feature selection in this  
model.  Meanwhile, the benefit of preliminary feature selection could not be confirmed with the neutral network (NN) 
and DL models.  The p-values are results of the Mann-Whitney U test.  NN [4,3,2] denotes a DL model with three hid-
den layers comprising 4, 3, and 2 neurons.  Validation accuracies in NN models were obtained using 100 epochs with 
3-fold cross-validation.  The number of trees in RF was 500.  
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19 cases when reliable clinical or laboratory data are 
unavailable.  In clinical studies, it is crucial to determine 
whether a predictive model can be structurally interpreted 
in view of distinct risk factors.  In this respect, the conven-
tional logistic regression model has an advantage over 
ML-based models.  Conversely, in view of the practical 
usability of predictive models in actual triage processes, 
predictive accuracy may be prioritized over interpretability 
by certain public health policies, in which case ML models 
are more desirable than those derived from conventional 
logistic regression.  Although the naïve Bayes models 
employed fewer features, they exhibited promising poten-
tial as predictive models for severe COVID-19 cases.  
Subsequent attempts to develop predictive models for 
severe cases may benefit from using the naïve Bayes classi-
fier, particularly given a relatively small quantity of training 
set.

To date, few studies have evaluated the accuracy of the 
naïve Bayes classifiers in the prediction of severe COVID-
19 cases.  The naïve Bayes classifier uses Bayes’ theorem 
with a strong assumption of independence between features, 
with parameters approximated using the maximum likeli-
hood method.  Despite its strong independence assumption 
with input features that appear to be oversimplified for real-

world data, this model has been reported to exhibit excel-
lent performance compared to logistic regression and even 
other supervised ML models (Awan et al. 2020; Golpour et 
al. 2020; Mfateneza et al. 2022).  One strength of the naïve 
Bayes classifier is that it often works well with a relatively 
small amount of training data, as demonstrated in a previ-
ous study (Sardesai et al. 2021).  This strength may be 
derived from the assumption of independence between fea-
tures, as the dimension of calculation, or number of data 
points, used to estimate the optimal parameters is well-sup-
pressed to a lower level than in other ML models, including 
DL models.  This is particularly important when the data 
dimensionality is high for a number of training datasets, 
which results in the curse-of-dimensionality problem.  In 
the early stages of a pandemic, with limited direct data and 
evidence, the issue of high dimensionality with a low train-
ing data size is a frequent occurrence.  In such situations, 
the naïve Bayes model represents a promising approach for 
the prediction of outcomes along with the conventional 
logistic regression model or penalized feature selection 
methods, such as LASSO, for extracting significant risks.

This study had several limitations.  First, the number 
of available data points was relatively small, and the inci-
dence of the primary outcomes was relatively low at less 

 Table 2.  Sensitivity analysis for AUC measures with randomly reassigned training and validation datasets 
following feature selection.

Models ML method Parameters AUC (95% CI)

Model 1 Liner discriminant analysis 0.793 (0.708-0.877)
Model 2 Nonlinear discrimination Logistic regression model 0.753 (0.585-0.921)
Model 3 SVM 3-fold cross validation 0.802 (0.672-0.932)
Model 4 CART 0.734 (0.577-0.890)
Model 5 Random Forest 500 decision trees 0.795 (0.670-0.920)
Model 6.1 Single-HL NN 5 units in the hidden layer 0.824 (0.733-0.916)
Model 6.2 Single-HL NN 10 units in the hidden layer 0.819 (0.729-0.908)
Model 7.1 Two-HL NN 2 HLs with [2, 2] neurons 0.815 (0.733-0.898)
Model 7,2 Two-HL NN 2 HLs with [3, 2] neurons 0.708 (0.527-0.888)
Model 7.3 Two-HL NN 2 HLs with [5, 3] neurons 0.834 (0.751-0.917)
Model 7.4 Two-HL NN 2 HLs with [10, 5] neurons 0.721 (0.525-0.912)
Model 7.5 Deep Learning 3 HLs with [4, 3, 2] neurons 0.824 (0.710-0.939)
Model 7.6 Deep Learning 3 HLs with [15, 10, 5] neurons 0.793 (0.616-0.969)
Model 7.7 Deep Learning 3 HLs with [30, 20, 10] neurons 0.497 (0.289-0.705)
Model 7.8 Deep Learning 3 HLs with [45, 30, 15] neurons 0.698 (0.474-0.922)
Model 7.9 Deep Learning 5 HLs with [50, 40, 30, 20, 10] neurons 0.730 (0.516-0.945)
Model 8.1 Naïve Bayes Using Kernel density estimation 0.839 (0.749-0.929)
Model 8.2 Naïve Bayes Not using Kernel density estimation 0.811 (0.716-0.905)

Sensitivity analysis was performed by randomly selecting another pair of datasets for training (215 patients) 
and validation (143 patients) using the features selected by least absolute shrinkage and selection operator 
(LASSO).  The feature selection was performed with the new training dataset, and the following 11 features 
were with nonzero coefficients: age, sex, body mass index (BMI), hypertension (HTN), diabetes mellitus 
(DM), bronchial asthma (BA), heart diseases, cardiovascular disease (CVD), chronic obstructive pulmonary 
disease (COPD), hyperuricemia (HU), and atopy.  Validation accuracies in neural network (NN) models 
were obtained using 100 epochs with 3-fold cross-validation.
ML, machine learning; SVM, Support Vector Machines; CART, Classification and Regression Trees; HL, 
hidden layer.
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than 10%.  Consequently, the generalizability of our find-
ings to other demographics, including other variants of 
COVID-19, remains uncertain.  Further studies using data 
from patients with these variants are required to confirm 
our hypotheses.  Another limitation pertains to the patterns 
of parameters used for the NN and DL models, with 1-5 
hidden layers and 2-50 neurons in each layer.  Parameter 
optimization is an essential but difficult issue in developing 
DL models, and the advantages of these models could not 
be statistically evaluated in this study.  Finally, because the 
present study encompassed the period before the develop-
ment of vaccines against COVID-19, the collected features 
did not include a history of vaccination.  In similar future 
studies, the vaccination status of each patient must also be 
considered as an important demographic feature, as vacci-
nation status is known to suppress the incidence of severe 
COVID-19 (Ng et al. 2022).

In conclusion, this study evaluated the robustness and 
accuracy of clinical predictive models based on logistic 
regression and ML models given a limited sample size and 
set of variables.  Several ML-based models, including the 
naïve Bayes, RF, NN, and DL models, performed better 
than the conventional logistic regression model for this 
task.  Conversely, an excessive number of hidden layers or 
neurons in a DL model resulted in suboptimal predictive 
accuracy.  The benefit of performing feature selection 

before building models depended on the types of ML mod-
els and their parameters.  Overall, this study demonstrated a 
high usability of the naïve Bayes model in building a pre-
diction model when the data resources and the evidence of 
risk factors are limited.
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Table 3.  AUC measures following feature selection using data from another cohort of 571 patients.

Models ML method Parameters AUC (95% CI)

Model 1 Liner discriminant analysis 0.749 (0.659-0.839)
Model 2 Nonlinear discrimination Logistic regression model 0.777 (0.683-0.872)
Model 3 SVM 3-fold cross validation 0.550 (0.383-0.717)
Model 4 CART 0.749 (0.629-0.869)
Model 5 Random Forest 500 decision trees 0.779 (0.670-0.888)
Model 6.1 Single-HL NN 5 units in the hidden layer 0.789 (0.705-0.874)
Model 6.2 Single-HL NN 10 units in the hidden layer 0.796 (0.713-0.878)
Model 7.1 Two-HL NN 2 HLs with [2, 2] neurons 0.673 (0.538-0.808)
Model 7,2 Two-HL NN 2 HLs with [3, 2] neurons 0.741 (0.639-0.844)
Model 7.3 Two-HL NN 2 HLs with [5, 3] neurons 0.822 (0.751-0.894)
Model 7.4 Two-HL NN 2 HLs with [10, 5] neurons 0.737 (0.588-0.886)
Model 7.5 Deep Learning 3 HLs with [4, 3, 2] neurons 0.693 (0.546-0.839)
Model 7.6 Deep Learning 3 HLs with [15, 10, 5] neurons 0.733 (0.587-0.879)
Model 7.7 Deep Learning 3 HLs with [30, 20, 10] neurons 0.749 (0.624-0.873)
Model 7.8 Deep Learning 3 HLs with [45, 30, 15] neurons 0.749 (0.595-0.903)
Model 7.9 Deep Learning 5 HLs with [50, 40, 30, 20, 10] neurons 0.738 (0.604-0.872)
Model 8.1 Naïve Bayes Using Kernel density estimation 0.821 (0.743-0.900)
Model 8.2 Naïve Bayes Not using Kernel density estimation 0.798 (0.718-0.879)

Another sensitivity analysis was conducted on a different cohort of 571 patients without available body mass index 
(BMI) data.  Sixty percent of the patients were randomly allocated for the training dataset (n = 343), with the 
remaining 40% reserved for the validation dataset (n = 228).  Feature selection was performed using the least absolute 
shrinkage and selection operator (LASSO) method for the training dataset, and the following six features were with 
nonzero coefficients: age, sex, deep learning (DL), heart disease, liver disease, and psychiatric disease.
ML, machine learning; SVM, Support Vector Machines; CART, Classification and Regression Trees; HL, hidden layer; 
NN, neural network.
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